Respuesta :

gmany

Answer:

[tex]\large\boxed{height=\dfrac{3}{4}y}[/tex]

Step-by-step explanation:

The formulas of a volume of

a cylinder:

[tex]V_1=\pi r^2h[/tex]

a cone:

[tex]V_2=\dfrac{1}{3}\pi r^2h[/tex]

r - radius

h - height

Substitute

The cylinder:

[tex]V_1=\pi x^2y[/tex]

The cone:

[tex]V_2=\dfrac{1}{3}\pi (2x)^2h=\dfrac{1}{3}\pi(4x^2)h=\dfrac{4}{3}\pi x^2h[/tex]

The cylinder and the cone have the same volume. Therefore we have the equation:

[tex]\dfrac{4}{3}\pi x^2h=\pi x^2y[/tex]        divide both sides by πx²

[tex]\dfrac{4}{3}h=y[/tex]        multiply both sides by 3/4

[tex]\dfrac{3\!\!\!\!\diagup^1}{4\!\!\!\!\diagup_1}\cdot\dfrac{4\!\!\!\!\diagup^1}{3\!\!\!\!\diagup_1}h=\dfrac{3}{4}y\\\\h=\dfrac{3}{4}y[/tex]