What is the value of x, given that PQ || BC?

Answer:
Option A [tex]x=8\ units[/tex]
Step-by-step explanation:
we know that
The triangles ABC and APQ are similar
then
The ratio of their corresponding sides is equal
[tex]\frac{AP}{AB}=\frac{AQ}{AC}[/tex]
we have
[tex]AP=7\ units[/tex]
[tex]AB=35+7=42\ units[/tex]
[tex]AQ=x\ units[/tex]
[tex]AC=(40+x)\ units[/tex]
substitute
[tex]\frac{7}{42}=\frac{x}{(40+x)}\\ \\\frac{1}{6}=\frac{x}{(40+x)}\\ \\ 40+x=6x\\ \\6x-x=40\\ \\5x=40\\ \\x=8\ units[/tex]