quaeup
contestada

What is the greatest common factor of 12xy5 + 60x4y2 − 24x3y3 ?

A. 6xy5
B. 6xy2
C. 12xy2
D. 3x4y5

Respuesta :

C. 12xy2 is the awnser

Answer:

The greatest common factor of the equation is [tex]12xy^{5} + 60x^{4}y^{2}-24x^{3}y^{3}[/tex] is 12xy² .

Option (C) is correct .

Step-by-step explanation:

As given the expression in the question be as follow .

[tex]=12xy^{5} + 60x^{4}y^{2}-24x^{3}y^{3}[/tex]

Now by using the exponent formula

[tex]x^{a}\times x^{b}=x^{a+b}[/tex]

[tex]=12xy^{2+3} + 60x^{1+3}y^{2}-24x^{2+1}y^{2+1}[/tex]

[tex]=12xy^{2}.y^{3}+ 60x^{1}x^{3}y^{2}-24x^{2}x^{1}y^{2}y^{1}[/tex]

Taking common part from the above equation

[tex]=12xy^{2}(y^{3}+5x^{3}-2x^{2}y^{1})[/tex]

Therefore the greatest common factor of the equation is [tex]12xy^{5} + 60x^{4}y^{2}-24x^{3}y^{3}[/tex] is 12xy² .

Option (C) is correct .