Respuesta :
Answer:
The greatest common factor of the equation is [tex]12xy^{5} + 60x^{4}y^{2}-24x^{3}y^{3}[/tex] is 12xy² .
Option (C) is correct .
Step-by-step explanation:
As given the expression in the question be as follow .
[tex]=12xy^{5} + 60x^{4}y^{2}-24x^{3}y^{3}[/tex]
Now by using the exponent formula
[tex]x^{a}\times x^{b}=x^{a+b}[/tex]
[tex]=12xy^{2+3} + 60x^{1+3}y^{2}-24x^{2+1}y^{2+1}[/tex]
[tex]=12xy^{2}.y^{3}+ 60x^{1}x^{3}y^{2}-24x^{2}x^{1}y^{2}y^{1}[/tex]
Taking common part from the above equation
[tex]=12xy^{2}(y^{3}+5x^{3}-2x^{2}y^{1})[/tex]
Therefore the greatest common factor of the equation is [tex]12xy^{5} + 60x^{4}y^{2}-24x^{3}y^{3}[/tex] is 12xy² .
Option (C) is correct .