Respuesta :
[tex]y=e^p(p+p\sqrt p)=e^p(p+p^{3/2})[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dp}=e^p(p+p^{3/2})+e^p\left(1+\dfrac32p^{1/2}\right)=e^p\left(1+\dfrac32p^{1/2}+p+p^{3/2}\right)[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dp}=e^p(p+p^{3/2})+e^p\left(1+\dfrac32p^{1/2}\right)=e^p\left(1+\dfrac32p^{1/2}+p+p^{3/2}\right)[/tex]
Answer:
[tex]e^p(p+p\sqrt{p}+1+\frac{3}{2}\sqrt{p})[/tex]
Step-by-step explanation:
We are given the following information in the question:
[tex]y = e^p(p+p\sqrt{p})\\\\y = e^p(p + p^{\frac{3}{2}})[/tex]
We will use the product rule to differentiate the above expression.
The product rule says that:
[tex]\displaystyle\frac{d(uv)}{dx} = u.\frac{dv}{dx} + v \frac{du}{dx}[/tex]
The differentiation is done in the following ways:
[tex]\displaystyle\frac{dy}{dx} = \frac{d(e^p)}{dp}(p+p\sqrt{p}) + e^p\frac{d(p+p\sqrt{p})}{dp}\\\\= e^p(p+p\sqrt{p}) + e^p(1+\frac{3}{2}\sqrt{p})\\\\= e^p(p+p\sqrt{p}+1+\frac{3}{2}\sqrt{p})[/tex]
The above is the required differentiation of the given expression.