at 20°C , the volume of chlorine gas is 15 dm3 . Compute for the resulting volume if the temperature is adjusted to 318 K provided that the pressure remains the same

Respuesta :

applying boyles' Combined gas Law:
(P1)(V1) / T1= (P2)(V2)/T2
T1= 20°C=20°+273= 293K
T2=318K
 V1=15 dm^3
 V2=?
the pressure remains the same, that means P1 = P2
so (P1)(V1) / T1= (P2)(V2)/T2 implies (V1) / T1= (V2)/T2 (P1 and P2 are simplified)
finally  V2= V1 x T2/ T1= 15*318/293=16.27dm^3

Answer: [tex]16.28dm^3[/tex]

Explanation: Charles' Law: This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.

[tex]V\propto T[/tex] (At constant pressure and number of moles)

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

where V= volume

T= temperature in Kelvin

Given:  

[tex]V_1=15 dm^3[/tex]

[tex]T_1=20^0C=20+273K=293K[/tex]

[tex]V_2[/tex]=?

[tex]T_1=318K[/tex]

[tex]\frac{15dm^3}{293K}=\frac{V_2}{318K}[/tex]

[tex]V_2=16.28dm^3[/tex]