Respuesta :
㏒3 (x+12)=㏒3 (5x)
㏒3(x+12)-㏒3(5x)=0
㏒3[tex] \frac{x+12}{5x} [/tex]=0
[tex] 3^{0} = \frac{x+12}{5x} , [/tex]
1=(x+12)/5x
5x=x+12
5x-x=12
4x=12
x=12/4=3
㏒3(x+12)-㏒3(5x)=0
㏒3[tex] \frac{x+12}{5x} [/tex]=0
[tex] 3^{0} = \frac{x+12}{5x} , [/tex]
1=(x+12)/5x
5x=x+12
5x-x=12
4x=12
x=12/4=3
Answer: The solution is x = 3.
Step-by-step explanation: We are given to solve the following logarithmic equation:
[tex]\log 3(x+12)=\log 3(5x).[/tex]
We will be using the following property of logarithm:
[tex](i)~\log(ab)=\log a+\log b\\\\(ii)~\log a=\log b~~~\Rightarrow a=b.[/tex]
We have
[tex]\log 3(x+12)=\log 3(5x)\\\\\Rightarrow \log3+\log(x+12)=\log 3+\log 5x\\\\\Rightarrow \log(x+12)=\log 5x\\\\\Rightarrow x+12=5x\\\\\Rightarrow 5x-x=12\\\\\Rightarrow 4x=12\\\\\Rightarrow x=3.[/tex]
Thus, the solution of the given equation is x = 3.