Respuesta :

Answer:

The point 16+24i is the point satisfying the equation

Hence, Option D is correct.

Step-by-step explanation:

We will find mid-point from end points given.

Mid-point formula: [tex](x,y)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

On substituting the values we will get:

[tex](x,y)=(\frac{-25+15}{2},\frac{-17+25}{2})[/tex]

[tex](x,y)=(-5,4)[/tex]

Now, we have general equation of circle:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

We will find r that is distance from mid-point to end oint using distance formula

[tex]\text{distance formula}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Here, [tex]x_1=-5,x_2=-25,y_1=4,y_2=-17[/tex]

On substituting the values we get:

[tex]\text{distance formula}=\sqrt{(-25+5)^2+(-17-4)^2}[/tex]

[tex]\text{distance formula}=\sqrt({20}^2+{21}^2)[/tex]

[tex]\text{distance}=\sqrt{841}[/tex]

Hence, [tex]r^2=841[/tex]

Substituting the values in general equation we get:

[tex](x-(-5))^2+(y-4)^2=841[/tex]

[tex]\Rightarrow(x+5)^2+(y-4)^2=841[tex]

And when we substitute x=16 and y=24 the equation will be satisfied

and a=-5 and b=4

Hence, will lie on the circle

Therefore, option D is correct.

Answer:

D

Step-by-step explanation:

edge :)