Respuesta :
I was thinking that the answer could be
2.810; log3 21.903
OR
2.810; log3 55.2
So, log5 of 92 is between 2.5 and 3 Correct answer is A
2.810; log3 21.903
OR
2.810; log3 55.2
So, log5 of 92 is between 2.5 and 3 Correct answer is A
Answer:
[tex]\log_5 92=2.809[/tex]
[tex]\log_3 2.809=0.940[/tex]
Step-by-step explanation:
To find : Use the Change of Base Formula to evaluate [tex]\log_5 92[/tex].
Then convert [tex]\log_5 92[/tex] to a logarithm in base 3.
Solution :
Change of Base Formula,
[tex]\log_b x=\frac{log_a x}{\log_a b}[/tex]
Applying this,
[tex]\log_5 92=\frac{log 92}{\log 5}[/tex]
[tex]\log_5 92=\frac{1.963}{0.698}[/tex]
[tex]\log_5 92=2.809[/tex]
Now, converting [tex]\log_5 92[/tex] to a logarithm in base 3
[tex]\log_3 2.809=\frac{log 2.809}{\log 3}[/tex]
[tex]\log_3 2.809=\frac{0.448}{0.477}[/tex]
[tex]\log_3 2.809=0.940[/tex]
Therefore, The solution is [tex]\log_3 2.809=0.940[/tex]