Respuesta :
[tex]\csc(-x)=\dfrac1{\sin(-x)}=-\dfrac1{\sin x}=-\csc x[/tex]
[tex]1+\tan^2x=\sec^2x[/tex]
So,
[tex]\dfrac{\csc(-x)}{1+\tan^2x}=-\dfrac{\csc x}{\sec^2x}=-\dfrac{\cos^2x}{\sin x}=-\cot x\cos x[/tex]
So the answer is C.
[tex]1+\tan^2x=\sec^2x[/tex]
So,
[tex]\dfrac{\csc(-x)}{1+\tan^2x}=-\dfrac{\csc x}{\sec^2x}=-\dfrac{\cos^2x}{\sin x}=-\cot x\cos x[/tex]
So the answer is C.
Answer:
The simplified expression is:
Option: c
c. -cos(x)cot(x)
Step-by-step explanation:
We are asked to simplify the expression:
[tex]\dfrac{\csc (-x)}{1+\tan^2 x}[/tex]
We know that :
[tex]\csc (-x)=-\csc x[/tex]
Also, we know that:
[tex]\sec^2 x-\tan^2 x=1\\\\i.e.\\\\\sec^2 x=1+\tan^2 x[/tex]
i.e.
[tex]\dfrac{\csc (-x)}{1+\tan^2 x}=\dfrac{-\csc x}{\sec^2 x}[/tex]
Also, we know that:
[tex]\csc x=\dfrac{1}{\sin x}[/tex]
and
[tex]\sec x=\dfrac{1}{\cos x}\\\\\\i.e.\\\\\\\sec^2 x=\dfrac{1}{\cos^2 x}\\\\i.e.\\\\\cos^2x=\dfrac{1}{\sec^2 x}[/tex]
Hence, we have:
[tex]\dfrac{\csc (-x)}{1+\tan^2 x}=-\dfrac{\cos^2 x}{\sin x}[/tex]
which could also be written as:
[tex]\dfrac{\csc (-x)}{1+\tan^2 x}=-\dfrac{\cos x}{\sin x}\times \cos x[/tex]
Now, we have:
[tex]\cot x=\dfrac{\cos x}{\sin x}[/tex]
Hence, we get:
[tex]\dfrac{\csc (-x)}{1+\tan^2 x}=-\cos x\cot x[/tex]