Respuesta :
The inverse of f(x)=2x−3 is f(x)=(x+3)/2, the inverse of the function f(x)=4x+10 is f(x)=(x-10)/4.
The 3rd question is not clear. What is x4 and where is the function g?
The 3rd question is not clear. What is x4 and where is the function g?
Answer and Explanation :
We have to find the inverse of the functions below :
1) [tex]f(x)=2x-3[/tex]
Let f(x)=y
[tex]y=2x-3[/tex]
Replace the value of x and y,
[tex]x=2y-3[/tex]
Now we find y,
[tex]x+3=2y[/tex]
[tex]y=\frac{x+3}{2}[/tex]
The inverse of the function is [tex]f^{-1}(x)=\frac{x+3}{2}[/tex]
2) [tex]f(x)=4x+10[/tex]
Let f(x)=y
[tex]y=4x+10[/tex]
Replace the value of x and y,
[tex]x=4y+10[/tex]
Now we find y,
[tex]x-10=4y[/tex]
[tex]y=\frac{x-10}{4}[/tex]
The inverse of the function is [tex]f^{-1}(x)=\frac{x-10}{4}[/tex]
3) [tex]f(x)=x^4+7[/tex] for x≥0
Let f(x)=y
[tex]y=x^4+7[/tex]
Replace the value of x and y,
[tex]x=y^4+7[/tex]
Now we find y,
[tex]x-7=y^4[/tex]
[tex]y=(x-7)^{\frac{1}{4}}[/tex]
The inverse of the function is [tex]g(x)=(x-7)^{\frac{1}{4}}[/tex]