The average rate of change of the function between x = 15 to x = 25 is ___degrees Celsius per thousand feet and represents the rate of change of temperature per thousand feet.

Answer:
[tex]2\degree \:C[/tex]
Step-by-step explanation:
The average rate of change of the function between [tex]x=15[/tex] and [tex]x=25[/tex] is given by the formula;
[tex]Average\:rate\:of\:change=\frac{f(25)-f(15)}{25-15}[/tex]
From the table, [tex]f(15)=4[/tex].
[tex]f(25)=-16[/tex].
We substitute the values to obtain;
[tex]Average\:rate\:of\:change=\frac{4--16}{25-15}[/tex]
This will give us,
[tex]Average\:rate\:of\:change=\frac{4+16}{25-15}[/tex]
We now simplify to obtain,
[tex]Average\:rate\:of\:change=\frac{20}{10}=2[/tex]
Therefore the average rate of change of the function from [tex]x=15[/tex] to [tex]x=25[/tex] is [tex]2[/tex] degrees celsius.