The average rate of change of the function between x = 15 to x = 25 is ___degrees Celsius per thousand feet and represents the rate of change of temperature per thousand feet.

The average rate of change of the function between x 15 to x 25 is degrees Celsius per thousand feet and represents the rate of change of temperature per thousa class=

Respuesta :

(15,4) (25,-16)
y2-y1/x2-x1
-16-4=-20
25-15=10
20/10=2
i think thts right

Answer:

[tex]2\degree \:C[/tex]

Step-by-step explanation:

The average rate of change of the function between [tex]x=15[/tex] and [tex]x=25[/tex] is given by the formula;


[tex]Average\:rate\:of\:change=\frac{f(25)-f(15)}{25-15}[/tex]


From the table, [tex]f(15)=4[/tex].

[tex]f(25)=-16[/tex].

We substitute the values to obtain;

[tex]Average\:rate\:of\:change=\frac{4--16}{25-15}[/tex]


This will give us,


[tex]Average\:rate\:of\:change=\frac{4+16}{25-15}[/tex]


We now simplify to obtain,

[tex]Average\:rate\:of\:change=\frac{20}{10}=2[/tex]


Therefore the average rate of change of the function from [tex]x=15[/tex] to [tex]x=25[/tex]  is [tex]2[/tex] degrees celsius.