contestada

The graph of an inverse trigonometric function passes through the point (1, pi/2). Which of the following could be the equation of the function?
A) y=cos^-1 x
B) y=cot^-1 x
C) y=sin^-1 x
D) y=tan^-1 x

Respuesta :

Answer: C) [tex]y=sin^-1 x[/tex]

Step-by-step explanation:

Since, the graph of an inverse trigonometric function will pass through the point [tex](1,\frac{\pi}{2})[/tex],

If this point satisfies the function,

For the function [tex]y=cos^{-1} x[/tex]

If x = 1

[tex]y=cos^{-1}1=0[/tex]

Thus,  [tex](1,\frac{\pi}{2})[/tex] is not satisfying function  [tex]y=cos^{-1} x[/tex],

The graph of   [tex]y=cos^{-1} x[/tex] is not passing through the point  [tex](1,\frac{\pi}{2})[/tex]

For the function [tex]y=cot^{-1}x[/tex]

If x = 1

[tex]y=cot^{-1}1=\frac{\pi}{4}[/tex]

Thus,  [tex](1,\frac{\pi}{2})[/tex] is not satisfying function [tex]y=cot^{-1}x[/tex],

The graph of   [tex]y=cot^{-1}x[/tex] is not passing through the point  [tex](1,\frac{\pi}{2})[/tex]

For the function [tex]y=sin^{-1} x[/tex]

If x = 1

[tex]y=sin^{-1}1=\frac{\pi}{2}[/tex]

Thus,  [tex](1,\frac{\pi}{2})[/tex] is satisfying function [tex]y=sin^{-1} x[/tex],

The graph of   [tex]y=sin^{-1} x[/tex] is passing through the point  [tex](1,\frac{\pi}{2})[/tex].

For the function [tex]y=tan^{-1}x[/tex]

If x = 1

[tex]y=tan^{-1}1=\frac{\pi}{4}[/tex]

Thus,  [tex](1,\frac{\pi}{2})[/tex] is not satisfying function  [tex]y=cos^{-1} x[/tex],

The graph of   [tex]y=tan^{-1} x[/tex] is not passing through the point [tex](1,\frac{\pi}{2})[/tex].

Hence, Option C is correct.