f(x)=3x+12
a) determine the inverse of the function and name it g(x)
b) use composite functions to show that these functions are inverses
c) evaluate f(g(-2)) explain: what is the domain?

please show your work so i can understand thank you!

Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2850696

_______________


•  Function:   f(x) = 3x + 12.


a)  Finding the inverse of f.

The composition of f with its inverse results in the identity function:

(f o g)(x) = x

f[ g(x) ] = x

3 · g(x) + 12 = x

3 · g(x) = x – 12

              x – 12
g(x)  =  ⸺⸺
                 3

               x 
g(x)  =  ⸺  –  4    <———    this is the inverse of f.
               3

________


b)  Verifying that the composition of f and g gives us the identity function:

•  [tex]\mathsf{(f\circ g)(x)}[/tex]

[tex]\mathsf{=f\big[g(x)\big]}\\\\\\ \mathsf{=3\cdot \left(\dfrac{x}{3}-4\right)+12}\\\\\\ \mathsf{=\diagup\hspace{-7}3\cdot \dfrac{x}{\diagup\hspace{-7}3}-3\cdot 4+12}\\\\\\ \mathsf{=x-12+12}\\\\ \mathsf{=x\qquad\quad\checkmark}[/tex]


and also

•  [tex]\mathsf{(g\circ f)(x)}[/tex]

[tex]\mathsf{=g\big[f(x)\big]}\\\\\\ \mathsf{=\dfrac{f(x)}{3}-4}\\\\\\ \mathsf{=\dfrac{3x+12}{3}-4}\\\\\\ \mathsf{=\dfrac{\diagup\hspace{-7}3\cdot (x+4)}{\diagup\hspace{-7}3}-4}\\\\\\ \mathsf{=x+4-4}\\\\ \mathsf{=x\qquad\quad\checkmark}[/tex]

________


c)  Since f and g are inverse, then

f(g(– 2))

= (f o g)(– 2)

– 2          ✔


•  Call h the compositon of f and g. So,

h(x) = (f o g)(x)

h(x) = x


As you can see above, there is no restriction for h. Therefore, the domain of h is R (all real numbers).


I hope this helps. =)