Respuesta :
The velocity of a particle = i + 2t j
The acceleration of a particle = 2 j
The speed of a particle = [tex]\sqrt{1 + 4t^{2} }[/tex]
Here,
The position function is, [tex]r (t ) = ti + t^{2} j +2k[/tex]
We have to find, the velocity, acceleration, and speed of a particle with the given position function.
What is Velocity of a particle with the given position function?
The instantaneous velocity v(t) of a particle is the derivative of the position with respect to time. That is, v(t)=dx/dt.
Now,
The position function is, [tex]r (t ) = ti + t^{2} j +2k[/tex]
The velocity of a particle = [tex]\frac{d r(t)}{dt}[/tex]
[tex]r (t ) = ti + t^{2} j +2k[/tex]
[tex]\frac{d r(t)}{dt} = i + 2t j[/tex]
The acceleration of a particle = [tex]\frac{d^{2} r(t)}{dt^{2} }[/tex]
[tex]r (t ) = ti + t^{2} j +2k[/tex]
[tex]\frac{d r(t)}{dt} = i + 2t j[/tex]
[tex]\frac{d^{2} r(t)}{dt^{2} }= 2j[/tex]
The speed of a particle = [tex]| \frac{d r(t)}{dt}| = |v(t)|[/tex]
[tex]\frac{d r(t)}{dt} = i + 2t j[/tex]
[tex]|v(t)|=\sqrt{1 + 4t^{2} }[/tex]
Hence, The velocity of a particle = [tex]i + 2t j[/tex]
The acceleration of a particle = [tex]2 j[/tex]
The speed of a particle = [tex]\sqrt{1 + 4t^{2} }[/tex]
Learn more about the velocity visit:
https://brainly.com/question/18566194
#SPJ4