Respuesta :

We have proved the trigonometric expression cos A + cos 2 A + cos 5 A = cos 2 A (1 + 2 cos 3 A) by using C/D formula.

We are given the expression:

cos A + cos 2 A + cos 5 A = cos 2 A (1 + 2 cos 3 A)

We need to prove the expression.

We know that:

Cos C + Cos D = 2 cos ( C + D / 2) cos ( C - D / 2)

Using this identity, we get that:

= cos 5 A + cos A + cos 2 A = cos 2 A (1 + 2 cos 3 A)

= 2 cos ( 5A + A / 2) cos ( 5A - A / 2) + cos 2 A = cos 2 A (1 + 2 cos 3 A)

= 2 cos 3 A cos 2 A + cos 2 A = cos 2 A (1 + 2 cos 3 A)

= cos 2 A ( 2 cos 3A + 1) = cos 2 A (1 + 2 cos 3 A)

= cos 2 A (1 + 2 cos 3 A) = cos 2 A (1 + 2 cos 3 A)

LHS = RHS

Hence proved.

Therefore, we have proved the trigonometric expression cos A + cos 2 A + cos 5 A = cos 2 A (1 + 2 cos 3 A) by using C/D formula.

Learn more about expression here:

https://brainly.com/question/723406

#SPJ9