contestada

Which of the following describes the end behavior of the function f(x) = root(x, 3) - 4 as approaches infinity ?

Respuesta :

Answer:1) An operator is missing in your statement. Most likely the right expression is:

Step-by-step explanation:

              2x

f(x) = -------------

          3x^2 - 3

So, I will work with it and find the result of each one of the statements given to determine their validiy.

2) Statement 1: The graph approaches 0 as x approaches infinity.

Find the limit of the function as x approaches infinity:

                                   2x

Limit when x →∞ of ------------

                                3x^2 - 3

Start by dividing numerator and denominator by x^2 =>

     2x / x^2                         2/x

--------------------------- = ---------------

 3x^2 / x^2 - 3 / x^2       3 - 3/x^2

                                     2/∞             0          0

Replace x with ∞ =>  ------------ =  ------- =  ---- = 0

                                   3 - 3/∞        3 - 0      3

Therefore the statement is TRUE.

3) Statement 2: The graph approaches 0 as x approaches negative infinity.

Find the limit of the function as x approaches negative infinity:

                                       2x

Limit when x → - ∞ of ------------

                                    3x^2 - 3

Start by dividing numerator and denominator by x^2 =>

     2x / x^2                         2/x

--------------------------- = ---------------

 3x^2 / x^2 - 3 / x^2       3 - 3/x^2

                                       2/(-∞)           0            0

Replace x with - ∞ =>  ------------ =  ---------- =  ---- = 0

                                     3 - 3/(-∞)      3 - 0        3

Therefore, the statement is TRUE.

4) Statement 3: The graph approaches 2/3 as x approaches infinity.

FALSE, as we already found that the graph approaches 0 when x approaches infinity.

5) Statement 4: The graph approaches –1 as x approaches negative infinity.

FALSE, as we already found the graph approaches 0 when x approaches negative infinity.