contestada

Which is the equation of a hyperbola centered at the origin with focus (-3,0) and vertex (-2,0)

Respuesta :

Main answer:[tex]x^{2}[/tex]/4 - [tex]y^{2}[/tex]/5=1

Definition of Hyperbola=a symmetrical open curve formed by the intersection of a circular cone with a plane at a smaller angle with its axis than the side of the cone.

Formula=[tex](x-x1)^{2}[/tex]/[tex]a^{2}[/tex] - [tex](y-y1)^{2}[/tex]/[tex]b^{2}[/tex]=1

Given,

origin o(0,0) , focus s(-3,0) , vertex v(-2,0)

and , x1=0, y1=0

  then,     equation of hyperbola becomes= [tex]x^{2}[/tex]/[tex]a^{2}[/tex]-[tex]y^{2}[/tex]/[tex]b^{2}[/tex]=1

a is the distance between center and the vertex,

    distance between o and v = 2

c is the distance between center and the focus,

   distance between o and s =3

                                  [tex]a^{2}[/tex]+[tex]b^{2}[/tex]=[tex]c^{2}[/tex]

                                  4+[tex]b^{2}[/tex]=9

                                      [tex]b^{2}[/tex]=5

Then the equation of hyperbola becomes=[tex]x^{2}[/tex]/4 -[tex]y{2}[/tex]/5=1

to learn more about Hyperbola visit:

brainly.in/question/41061731

#SPJ9