proof let a be a square matrix of order n. (a)show that is symmetric. (b)show that is skew-symmetric. (c)prove that a can be written as the sum of a symmetric matrix b and a skew-symmetric matrix c, a

Respuesta :

(a)Symmetric matrix -

Let matrix A be of order 3×3 =

                                  [tex]\left[\begin{array}{ccc}1&3&8\\3&8&-4\\8&-4&6\end{array}\right][/tex]

So, the transpose of A will be -

A' =

                                  [tex]\left[\begin{array}{ccc}1&3&8\\3&8&-4\\8&-4&6\end{array}\right][/tex]

So, we can say that A=A'. So, it is symmetric.

(b) Skew - symmetric matrix -

Let us consider a matrix B =

                                  [tex]\left[\begin{array}{ccc}0&-6&4\\-6&0&7\\4&7&0\end{array}\right][/tex]

matrix B is said to be skew-symmetric if aij =−aji.

(B' =−B)

B'  =    

                                 [tex]\left[\begin{array}{ccc}0&6&-4\\6&0&-7\\-4&-7&0\end{array}\right][/tex]

(c) A + A′ is a symmetric matrix for any square matrix A with real number entries, whereas A - A′ is a skew-symmetric matrix.

Proof: If B = A + A', then B ′ = (A + A ) ′

(A + B)′ = A′ + B′, thus = A′ + (A′)′

(as (A′)′ =A) = A′ + A

= B (because B + A = B + A′)

B = A+A′ is a symmetric matrix as a result.

Let C now equal A-A′.

Why does C' equal (A-A′)′=(A′)′?

= A′ - A (Why?)

=- (A - A′) = - C

A - A′ is a skew-symmetric matrix as a result.

To learn more about matrices from given link

https://brainly.in/question/14760668

#SPJ4