write out the form of the partial fraction decomposition of the function (as in this example). do not determine the numerical values of the coefficients. (a) x − 30 x2 x − 30 (x−5)b (x 6)a (x−5)(x 6)​ (b) x2 x2 x 30

Respuesta :

The form of the partial fraction decomposition of the given function is:

[tex]\frac{A}{x+5}+\frac{B}{x-4}[/tex]

What do we mean by rational expression?

  • The ratio of two polynomials is a rational expression.
  • If f is a rational expression, it can be expressed as p/q, where p and q are polynomials.

To find the form of the partial fraction:

The rational expression given is: [tex]\frac{x-20}{x^2+x-20}[/tex]

Factor the provided rational expression's denominator:

[tex]\begin{aligned}\frac{x-20}{x^2+x-20} &=\frac{x-20}{x^2+5 x-4 x-20} \\&=\frac{x-20}{x(x+5)-4(x+5)} \\&=\frac{x-20}{(x+5)(x-4)}\end{aligned}[/tex]

Apply the partial fraction decomposition method now:

[tex]\begin{aligned}\frac{x-20}{x^2+x-20} &=\frac{x-20}{(x+5)(x-4)} \\&=\frac{A}{x+5}+\frac{B}{x-4}\end{aligned}[/tex]

Therefore, the form of the partial fraction decomposition of the given function is:

[tex]\frac{A}{x+5}+\frac{B}{x-4}[/tex]

Know more about rational expression here:

https://brainly.com/question/25292194

#SPJ4

The correct question is given below:
Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.

[tex]\frac{x-20}{x^2+x-20}[/tex]