The value of the function (f/g)(x) when x=2 is 2
Function:
The characteristic that every input is associated to exactly one output defines a function as a relationship between a set of inputs and a set of allowable outputs. A mapping from A to B will only be a function if every element in set A has one end and only one image in set B. Let A & B be any two non-empty sets.
⇒(f/g)(x)=[tex]\frac{f(x)}{g(x)}[/tex]
⇒(f/g)(2)=[tex]\frac{f(2)}{g(2)}[/tex]
Given f(x)=2[tex]x^{2}[/tex] and g(x)=3x-2
⇒(f/g)(2)=[tex]\frac{f(2)}{g(2)}[/tex]
⇒(f/g)(2)=[tex]\frac{2(2)^{2} }{3(2)-2}[/tex]
⇒(f/g)(2)=[tex]\frac{8}{4}[/tex]
⇒(f/g)(2)=2.
Therefore,The value of the function (f/g)(x) when x=2 is 2
Learn more about function here:
https://brainly.com/question/12431044
#SPJ9