the driver of the car maintains a constant speed of 20 m/s . determine the angular velocity of the camera tracking the car when θ

Respuesta :

The angular velocity is θ" = 0.302rad/s

Given data,

r = 100cos(2θ)

r = -200sin(2θ)θ"

For angular velocity,

[tex]v = \frac{dr}{dt} u^{r} +r\frac{dθ}{dt}[/tex]

[tex]v = \sqrt{\frac{dr}{dt} } ^{2} + \sqrt\frac{rdθ}{dt} ^{2}[/tex]

So, v = 20m/s

20 = √[-200sin(2θ)θ"[tex]]^{2}[/tex] + √[100cos(2θ)θ"[tex]]^{2}[/tex]

400 = [-200sin(2×15)θ"[tex]]^{2}[/tex] + [100cos(2×15)θ"[tex]]^{2}[/tex]

On solving for angular velocity, we get

θ" = 0.302rad/s

Learn more about angular velocity here;

https://brainly.com/question/12446100

#SPJ4