Respuesta :
Answer:
See explanation
Step-by-step explanation:
f(x) ==> 4f(x-1)
1. f(x) ==> f(x-1) Translate the graph 1 unit to the right
2. f(x-1) ==> 4f(x-1) Vertical stretch by a factor of 4
f(x) ==> -f(2x)
1. f(x) ==> f(2x) Horizontal compression by a factor of 1/2
2. f(2x) ==> -f(2x) Reflection over the x-axis
f(x) ==> f(-x)+2
1. f(x) ==> f(-x) Reflection over the y-axis
2. f(-x) ==> f(-x)+2 Translate the graph 2 units up.
Answer:
1) Translated 1 unit right and stretched vertically by a factor of 4.
2) Compressed horizontally by a factor of ¹/₂ and reflected in the x-axis.
3) Reflected in the y-axis and translated 2 units up.
Step-by-step explanation:
Transformations
For a > 0
[tex]f(x+a) \implies f(x) \: \textsf{translated $a$ units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
[tex]\begin{aligned} y =a\:f(x) \implies & f(x) \: \textsf{stretched/compressed vertically by a factor of $a$} \\& \textsf{If }a > 1 \textsf{ it is stretched by a factor of $a$}\\& \textsf{If }0 < a < 1 \textsf{ it is compressed by a factor of $a$}\end{aligned}[/tex]
[tex]\begin{aligned} y=f(ax) \implies & f(x) \: \textsf{stretched/compressed horizontally by a factor of $\dfrac{1}{a}$} \\ & \textsf{If }a > 1 \textsf{ it is compressed by a factor of $\dfrac{1}{a}$}\\ & \textsf{If }0 < a < 1 \textsf{ it is stretched by a factor of $\dfrac{1}{a}$}\end{aligned}[/tex]
[tex]y=-f(x) \implies f(x) \: \textsf{reflected in the $x$-axis}[/tex]
[tex]y=f(-x) \implies f(x) \: \textsf{reflected in the $y$-axis}[/tex]
Transformation 1
Given:
- [tex]4f(x-1)[/tex]
Transformations
[tex]f(x-1) \implies f(x) \: \textsf{translated}\:1\:\textsf{unit right}[/tex]
[tex]4\:f(x) \implies f(x) \: \textsf{stretched vertically by a factor of}\: 4[/tex]
Transformation 2
Given:
[tex]-f(2x)[/tex]
Transformations
[tex]f(2x) \implies f(x) \: \textsf{ compressed horizontally by a factor of $\dfrac{1}{2}$}[/tex]
[tex]-f(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}[/tex]
Transformation 3
Given:
[tex]f(-x)+2[/tex]
Transformations
[tex]f(-x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}[/tex]
[tex]f(x)+2 \implies f(x) \: \textsf{translated}\:2\:\textsf{units up}[/tex]
Learn more about transformations here:
https://brainly.com/question/28041916
https://brainly.com/question/27815602