(1 point) Find an equation for the linear function g(x) which is perpendicular to the line 5x−2y=6 and intersects the line 5x−2y=6 at x=8.
g(x)=

Respuesta :

Answer: y=-0.4x+20.2

Step-by-step explanation:

[tex]5x-2y=6\\5x-2y+2y=6+2y\\5x=6+2y\\5x-6=6+2y-6\\5x-6=2y[/tex]

Divide both parts of the equation by 2:

[tex]\displaystyle\\\frac{5x-6}{2}=y\\\\\frac{5}{2} x-3=y[/tex]

Coordinates of the intersection point of the equations:

[tex]\displaystyle\\y=\frac{5}{2}x-3 \ and\ x=8\ are:[/tex]

[tex]\displaystyle\\x=8\\Hence,\\y=\frac{5}{2} (8)-3\\\\y=\frac{5*8}{2} -3\\\\y=\frac{5*4*2}{2}-3\\\\y=5*4-3 \\\\y=20-3\\\\y=17\\Thus, (8,17)[/tex]

[tex]\displaystyle\\The\ slope\ \perp=-\frac{1}{\frac{5}{2} } \\\\The\ slope\ \perp=-\frac{2}{5}[/tex]

[tex]\displaystyle\\-\frac{2}{5} =\frac{y-17}{x-8}[/tex]

Multiply both parts of the equation by (x-8):

[tex]\displaystyle\\-\frac{2}{5}(x-8)=y-17\\\\-\frac{2}{5} x+\frac{2*8}{5} =y-17\\\\-\frac{2}{5}x+\frac{16}{5} =y-17\\\\ -0.4x+3.2=y-17\\\\ -0.4x+3.2+17=y-17+17\\\\-0.4x+20.2=y[/tex]-

Ver imagen sangers1959