Respuesta :

Answer:

It will be (x=1.y=6.z=-6

Answer:

Choice b

(x = 1,  y = 6, z = -6)  

Step-by-step explanation:

The system of equations is

3x + 4y  + 3z = 9     (1)
3x + 3y +  3z =  3      (2)

2x + 4y + 3z =  8      (3)

Subtract (2) from (1) to eliminate the 3x and 3y terms and solve for y

(1) - (2)

==> 3x + 4y  + 3z - (3x + 3y +3z) = 9 - 3

==> 3x + 4y + 3z - 3x - 3y - 3z = 6

(3x-3x) + (4y-3y) + (3z-3z) = 6

4y - 3y = 6

y = 6

Subtract (3) from (1) to isolate the x term

(3x - 2x) + (4y-4y) + (3z-3z) = 9 -8

x = 1

Divide equation (2) on both sides by 32 to eliminate the coefficients

Equation (2) ÷ 3

==> (3x + 3y + 3z) / 2 = 3/3

==> x + y + z = 1    (4)

Substitute the values of x and y in Equation (4)

1 + 6 + z = 1

7 + z = 1

Subtract 7 from both sides

==> z = 1-7 = 6

Answer:
(x = 1,  y = 6, z = -6)