Respuesta :

Answer:

[tex](x+3)^2=-4(y-3)[/tex]

Step-by-step explanation:

Standard form of a parabola with a vertical axis of symmetry

[tex]\large\boxed{(x-h)^2=4p(y-k) \quad \textsf{where}\:p\neq 0}[/tex]

[tex]\textsf{Vertex}=(h, k)[/tex]

[tex]\textsf{Focus}=(h,k+p)[/tex]

[tex]\textsf{Directrix}:y=(k-p)[/tex]

[tex]\textsf{Axis of symmetry}:x=h[/tex]

If p > 0, the parabola opens upwards.

If p < 0, the parabola opens downwards.

From inspection of the given graph:

  • Vertex = (-3, 3)
  • Focus = (-3, 2)
  • Directrix: y = 4
  • Axis of symmetry: x = -3

Therefore:

  • h = -3
  • k = 3
  • k + p = 2  ⇒  3 + p = 2  ⇒  p = -1
  • k - p = 4  ⇒  3 - p = 4  ⇒  p = -1

Substitute the found values of h, k and p into the formula:

[tex]\implies (x-(-3))^2=4(-1)(y-3)[/tex]

[tex]\implies (x+3)^2=-4(y-3)[/tex]

Learn more about parabolas here:

https://brainly.com/question/28152421

https://brainly.com/question/28160799