Respuesta :

Answer:

[tex](x-2)^2=4(y+5)[/tex]

Step-by-step explanation:

Standard form of a parabola with a vertical axis of symmetry

[tex]\large\boxed{(x-h)^2=4p(y-k) \quad \textsf{where}\:p\neq 0}[/tex]

[tex]\textsf{Vertex}=(h, k)[/tex]

[tex]\textsf{Focus}=(h,k+p)[/tex]

[tex]\textsf{Directrix}:y=(k-p)[/tex]

[tex]\textsf{Axis of symmetry}:x=h[/tex]

If p > 0, the parabola opens upwards.

If p < 0, the parabola opens downwards.

From inspection of the given graph:

  • Vertex = (2, -5)
  • Focus = (2, -4)
  • Directrix: y = -6
  • Axis of symmetry: x = 2

Therefore:

  • h = 2
  • k = -5
  • k + p = -4  ⇒  -5 + p = -4  ⇒  p = 1
  • k - p = -6  ⇒  -5 - p = -6  ⇒  p = 1

Substitute the found values of h, k and p into the formula:

[tex]\implies (x-2)^2=4(1)(y-(-5))[/tex]

[tex]\implies (x-2)^2=4(y+5)[/tex]

Learn more about parabolas here:

https://brainly.com/question/28152421

https://brainly.com/question/28160799