Help! Geometry project parabolas part 3

Answer:
[tex](x-2)^2=4(y+5)[/tex]
Step-by-step explanation:
Standard form of a parabola with a vertical axis of symmetry
[tex]\large\boxed{(x-h)^2=4p(y-k) \quad \textsf{where}\:p\neq 0}[/tex]
[tex]\textsf{Vertex}=(h, k)[/tex]
[tex]\textsf{Focus}=(h,k+p)[/tex]
[tex]\textsf{Directrix}:y=(k-p)[/tex]
[tex]\textsf{Axis of symmetry}:x=h[/tex]
If p > 0, the parabola opens upwards.
If p < 0, the parabola opens downwards.
From inspection of the given graph:
Therefore:
Substitute the found values of h, k and p into the formula:
[tex]\implies (x-2)^2=4(1)(y-(-5))[/tex]
[tex]\implies (x-2)^2=4(y+5)[/tex]
Learn more about parabolas here:
https://brainly.com/question/28152421
https://brainly.com/question/28160799