Solve the following quadratic equation using the quadratic formula and then choose the correct solution set. 6x2 - 7x + 2 = 0

Respuesta :

6x^2 - 7x + 2 = 0
(3x-2)(2x-1) = 0

3x-2 = 0
x = 2/3

2x-1=0
x=1/2

answer: x=1/2 and x =2/3

Answer:

Solutions of the quadratic equation are [tex]\dfrac{2}{3},\dfrac{1}{2}[/tex]

Step-by-step explanation:

The given quadratic equation is,

[tex]6x^2 - 7x + 2 = 0[/tex]

The quadratic formula is,

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Here,

[tex]a = 6,b=-7,c=2[/tex]

Putting the values,

[tex]x=\dfrac{-(-7)\pm \sqrt{(-7)^2-4\cdot 6\cdot 2}}{2\cdot 6}[/tex]

[tex]=\dfrac{7\pm \sqrt{49-48}}{12}[/tex]

[tex]=\dfrac{7\pm \sqrt{1}}{12}[/tex]

[tex]=\dfrac{7\pm 1}{12}[/tex]

[tex]=\dfrac{7+ 1}{12},\dfrac{7-1}{12}[/tex]

[tex]=\dfrac{8}{12},\dfrac{6}{12}[/tex]

[tex]=\dfrac{2}{3},\dfrac{1}{2}[/tex]