Respuesta :
Answer: 268.47 cubic inches.
Step-by-step explanation:
Given: Diameter of ball = 9 in.
⇒ Radius of ball R= [tex]\frac{9}{2}=4.5\ in.[/tex]
Diameter of spherical core = 6 in.
⇒ Radius of spherical core r= [tex]\frac{6}{2}=3\ in.[/tex]
Now, the volume of the polyurethane is given by :-
[tex]\text{Volume of polyurethane=Volume of ball- Volume of spherical core}\\\\\Rightarrow\text{Volume of polyurethane}=\frac{4}{3}\pi R^3-\frac{4}{3}\pi r^3\\\\\Rightarrow\text{Volume of polyurethane}=\frac{4}{3}\pi(R^3-r^3)\\\\\Rightarrow\text{Volume of polyurethane}=\frac{4}{3}(3.14)((4.5)^3-3^3)\\\\\Rightarrow\text{Volume of polyurethane}=268.47\ in.^3[/tex]