Respuesta :

The coordinates of E in Quadrant lll is (3 - [tex]2\sqrt{3}[/tex], -4)

Given,

m < F = 90°

E (x, y) in quadrant lll

F(-3, 4), G(-3, 2)

FG = The longer leg.

FG = [tex]\sqrt{(-3-(-3)^{2} )+(2-(-4)^{2} }[/tex] = [tex]\sqrt{36}[/tex] = 6

FE = [tex]\frac{FG}{\sqrt{3} }[/tex] = [tex]\frac{6}{\sqrt{3} }[/tex] = 2[tex]\sqrt{3}[/tex]

GE = 2FE = 2 × 2√3 = 4√3

ΔEFG is a 30° - 60° - 90° triangle with the longest leg FG = 6.

We apply the 30° - 60° - 90° triangle theorem to determine the short side FE and the hypotenuse GE.

l = 4√3

h = 2√3

[tex]\sqrt{(x-(-3))^{2} +(y-(-4))^{2} }[/tex] = (2√3)²

[tex]\sqrt{(x-(-3))^{2} +(y-2)^{2} }[/tex] = (4√3)²

∴ (x + 3)² + ( y + 4)² = 12

   (x + 3)² + (y - 2)² = 48

Solving this, we get:

Coordinates of E as (3 - 2√3, -4)

Learn more about coordinates here: https://brainly.com/question/13516953

#SPJ4