Respuesta :

If sinx =0.6 and AB =12, then area of triangle ABC is equal to 96 units².

As given in the question,

In triangle ABC,

AB = Perpendicular side

BC = Base

AC = Hypotenuse

sinx = 0.6

AB = 12

sinx = AB / AC

⇒0.6 = 12/AC

⇒AC = 12 /0.6

⇒ AC = 20

Using Pythagoras theorem,

AB² + BC² = AC²

⇒ BC² = 20² -12²

⇒BC = 16

Area of ΔABC = (1/2)× AB×BC

                       = (1/2)×12×16

                       = 96 units²

Therefore, if sinx =0.6 and AB =12, then area of triangle ABC is equal to 96 units².

The complete question is:

If sin x = 0.6 and AB = 12 as shown in the diagram , what is the area of ΔABC ?

a. 96 units²

b. 28.8 units²

c. 31.2 units²

d. 34.6 units²

e. 42.3 units²

Learn more about area here

brainly.com/question/27683633

#SPJ4

Ver imagen Yogeshkumari