Respuesta :

The solution to the logarithmic equation is - 10 / 3.

How to simplify a logarithmic equation to solve for a variable

Logarithms are examples of trascendent functions, that is, function that cannot be described in algebraic terms. Herein we must take advantage of logarithm properties to solve for x in the expression given. The complete procedure is shown below:

㏒₃ (3 · x - 2) - ㏒₃ (x + 2) = 2                        Given

㏒₃ [(3 · x - 2) / (x + 2)] = 2                             Logarithm of a division of functions

(3 · x - 2) / (x + 2) = 3²                                    Definitions of power and logarithm

(3 · x - 2) / (x + 2) = 9                                      Definition of power

3 · x - 2 = 9 · (x + 2)                                        Definition of division / Compatibility with multiplication / Existence of the multiplicative inverse / Associative and modulative properties

3 · x - 2 = 9 · x + 18                                         Distributive property

- 20 = 6 · x                                                       Compatibility with addition / Existence of the additive inverse / Associative, commutative and modulative properties

6 · x = - 20                                                       Symmetric property

x = - 20 / 6                                                       Definition of division / Compatibility of multiplication / Existence of the multiplicative inverse / Associative, commutative and modulative properties

x = - 10 / 3                                                        Simplification of fractions / Result

To learn more on logarithmic properties: https://brainly.com/question/12049968

#SPJ1