Determine the probability of following event.
If the chance of living in a particular dorm is 75% , what is the probability of living in another dorm?

Respuesta :

The probability of living in another dorm is 0.25.

How to find the probability at least two of them use their cell phone while driving?

Probability is a way of evaluating how likely something is to happen. Many things are difficult to forecast with absolute certainty.The branch of mathematics known as probability deals with numerical representations of the likelihood that an event will occur or that a statement is true.

[tex]probability = \frac{the \: numbers \: of \: favourable \: outcomes }{total \: number \: of \: possible \: outcomes} [/tex]

given that

so, the percentage of chance of living in a particular dorm is 75%.

The total percentage of chance of living in a particular dorm and another dorm is 100%.

now ,find the the percentage of the chance of living in another dorm.

The percentage of the chance of living in another dorm = 100% - 75% = 25% .

now, find the probability of the chance of living in another dorm.

the probability of the chance of living in another dorm p(another dorm) = 25/100 = 0.25

another method to find the probability of the chance of living in another dorm.

p(E) + p'(E) = 1

find the probability that it will rain P(particular dorm) = 75/100 = 0.75.

so, P(E) = 0.75

P'(E) = 1 - P(E)

p'(E) = 1 - 0.75

P'(E) = 0.25

Hence, The probability of living in another dorm is 0.25.

Learn more about probability from here:

https://brainly.com/question/24756209

#SPJ4