In this problem, you will investigate the relationship between the arcs of a circle that are cut by two parallel chords.
c. Verbal Draw another circle and repeat parts a and bfb . Make a conjecture about arcs of a circle that are cut by two parallel chords.

Respuesta :

Chords within a circle can be related in a variety of ways. Parallel chords cut congruent arcs in the same circle. That is, the arcs whose endpoints include one of each chord's endpoints have equal measures.

When two chords of a circle are parallel are the arcs?

Chords within a circle can be related in a variety of ways. Parallel chords cut congruent arcs in the same circle. That is, the arcs whose endpoints include one of each chord's endpoints have equal measures.

The lengths of the arcs connecting two parallel chords of a circle are equal. Similarly, if the lengths of the two arcs connecting two distinct chords are the same, the chords are parallel. If two chords have the same length, the arcs between their endpoints will have the same measure.

The term "parallel" refers to how each note in the chord rises or falls by the same interval.

To learn more about parallel chords refer to:

https://brainly.com/question/28214291

#SPJ4