simplify
please solve this...

Answer:
y-1/y^2 +4y
Step-by-step explanation:
2y - 1/y x (y + 4) - y-2/y^2 +4y - 2y -8
2y-1/y x (y+4 - y-2/y x (y +4 ) - 2(y + 4)
2y -1 / y x (y+4) - y-2/(y+4) x (y-2)
2y-1/y x (y+4) - 1/y +4
2y -1 -y/y x (y + 4)
y-1/y^2 +4y
Answer:
[tex]\dfrac{y-1}{y(y+4)}[/tex]
Step-by-step explanation:
Given expression:
[tex]\implies \dfrac{2y-1}{y^2+4y}-\dfrac{y-2}{y^2+2y-8}[/tex]
Factor the denominators of both fractions:
[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y-2}{y^2+4y-2y-8}[/tex]
[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y-2}{y(y+4)-2(y+4)}[/tex]
[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y-2}{(y-2)(y+4)}[/tex]
Cancel the common factor (y - 2) of the right fraction:
[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{1}{(y+4)}[/tex]
Adjust the fractions based on the LCM of y(y + 4):
[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y}{y(y+4)}[/tex]
[tex]\textsf{Apply the fraction rule} \quad \dfrac{a}{c}-\dfrac{b}{c}=\dfrac{a-b}{c}:[/tex]
[tex]\implies \dfrac{2y-1-y}{y(y+4)}[/tex]
Simplify:
[tex]\implies \dfrac{y-1}{y(y+4)}[/tex]