Respuesta :

Answer:

y-1/y^2 +4y

Step-by-step explanation:

2y - 1/y x (y + 4) - y-2/y^2 +4y - 2y -8

2y-1/y x (y+4 - y-2/y x (y +4 ) - 2(y + 4)

2y -1 / y x (y+4) - y-2/(y+4) x (y-2)

2y-1/y x (y+4) - 1/y +4

2y -1 -y/y x (y + 4)

y-1/y^2 +4y

Answer:

[tex]\dfrac{y-1}{y(y+4)}[/tex]

Step-by-step explanation:

Given expression:

[tex]\implies \dfrac{2y-1}{y^2+4y}-\dfrac{y-2}{y^2+2y-8}[/tex]

Factor the denominators of both fractions:

[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y-2}{y^2+4y-2y-8}[/tex]

[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y-2}{y(y+4)-2(y+4)}[/tex]

[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y-2}{(y-2)(y+4)}[/tex]

Cancel the common factor (y - 2) of the right fraction:

[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{1}{(y+4)}[/tex]

Adjust the fractions based on the LCM of y(y + 4):

[tex]\implies \dfrac{2y-1}{y(y+4)}-\dfrac{y}{y(y+4)}[/tex]

[tex]\textsf{Apply the fraction rule} \quad \dfrac{a}{c}-\dfrac{b}{c}=\dfrac{a-b}{c}:[/tex]

[tex]\implies \dfrac{2y-1-y}{y(y+4)}[/tex]

Simplify:

[tex]\implies \dfrac{y-1}{y(y+4)}[/tex]