Respuesta :


Data:
[tex]tg\^A = ?[/tex]
[tex]Opposite (side) = 12[/tex]
[tex]Adjacent (side) = 9[/tex]

Solving:
The tangent of angle  is the ratio of the opposite (BC) and adjacent (AC):
[tex] tg\^{A} = \frac{opposite}{adjacent}[/tex]
[tex]tg\^A = \frac{12}{9} [/tex]
[tex]\boxed{\boxed{tg\^A \approx1.3}}\end{array}}\qquad\quad\checkmark[/tex]


Applying the trigonometry ratio, [tex]tan(\theta) = \frac{Opp}{Adj}[/tex], the value of tan A is: 1.33

Recall:

  • To solve a right triangle, the trigonometry ratios, SOH CAH TOA, is usually applied.

Thus, to find tan A, we would apply TOA.

  • This is given as:

[tex]tan(\theta) = \frac{Opp}{Adj}[/tex]

Where,

Reference angle [tex](\theta) = A[/tex]

Opp. = 12

Adj. = 9

  • Substitute

[tex]tan(A) = \frac{12}{9} \\\\\mathbf{tan(A) = 1.33}[/tex]

Therefore, applying the trigonometry ratio, [tex]tan(\theta) = \frac{Opp}{Adj}[/tex], the value of tan A is: 1.33

Learn more here:

https://brainly.com/question/11831029