so.. if we take 387.50 as the 100%,
then we shave off from it, (50/3)%
what hmmm do we end up with?
[tex]\bf \begin{array}{ccllll}
amount&\%\\
\textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\
387.50&100\\
x&100-\frac{50}{3}
\end{array}\qquad \implies \cfrac{387.50}{x}=\cfrac{100}{100-\frac{50}{3}}
\\\\\\\\
\cfrac{387.50}{x}=\cfrac{\frac{100}{1}}{\frac{250}{3}}\implies \cfrac{387.50}{x}=\cfrac{100}{1}\cdot \cfrac{3}{250}\implies \cfrac{387.50}{x}=\cfrac{300}{250}[/tex]
solve for "x"