Please help me with this problem im confused.

Answer: A. D.
Step-by-step explanation:
A.
x-b-3<0
x-b-3+3<0+3
x-b<3 (yes)
B.
0>b-x+3
0+x>b-x+3+x
x>b+3
x-b>b+3-b
x-b>3 (no)
C.
x<3-b
x+b<3-b+b
x+b<3 (no)
D.
-3<b-x
-3+3<b-x+3
0<b-x+3
0+x<b-x+3+x
x<b+3
x-b<b+3-b
x-b<3 (yes)
Answer:
A and D
Step-by-step explanation:
Option A
[tex]\begin{aligned}& \textsf{Given inequality}: & x-b-3 & < 0\\& \textsf{Add 3 to both side}: \quad & x-b-3+3 & < 0+3\\& \textsf{Simplify}: & x-b & < 3\end{aligned}[/tex]
Option B
[tex]\begin{aligned}& \textsf{Given inequality}: & 0 & > b-x+3\\& \textsf{Add $x$ to both sides}: & 0+x & > b-x+3+x\\& \textsf{Simplify}: & x & > b+3\\& \textsf{Subtract $b$ from both sides}: \quad& x-b & > b+3-b\\& \textsf{Simplify}: & x-b & > 3\end{aligned}[/tex]
Option C
[tex]\begin{aligned}& \textsf{Given inequality}: & x & < 3-b\\& \textsf{Add b to both sides}: \quad & x+b & < 3-b+b\\& \textsf{Simplify}: & x+b & < 3\end{aligned}[/tex]
Option D
[tex]\begin{aligned}& \textsf{Given inequality}: & -3 & < b - x\\& \textsf{Divide both sides by -1}: \quad & \dfrac{-3}{-1} & > \dfrac{b}{-1}-\dfrac{x}{-1}\\& \textsf{Simplify}: & 3 & > -b+x\\& \textsf{Simplify}: & x-b & < 3\end{aligned}[/tex]
Note: When multiplying or dividing by a negative number in an inequality, remember to flip the inequality sign.