Respuesta :

the exponential form of the complex number \[ e^{17\pi i/60} e^{27\pi i/60} e^{37\pi i /60} e^{47 \pi i /60} e^{57 \pi i/60}\]

= (2+[tex]\sqrt{3}[/tex]) [tex]e^3^7^\pi^ i^/^6^0.[/tex]

How is the exponential form calculated?

[tex]e^1^7^\pi ^i/^6^0[/tex] + [tex]e^2^7^\pi^ i^/^6^0[/tex]+⋯+[tex]e^5^7^\pi ^i^/^6^0[/tex]

=[tex]e^1^7^\pi ^i^/^6^0[/tex](1+[tex]e^\pi^ i^/^6[/tex]+....+[tex]e^4^\pi ^i^/^6[/tex])

=[tex]e^1^7^\pi ^i^/^6^0[/tex] (1−[tex]e^5^\pi ^i^/^6[/tex]) ÷ (1−[tex]e^\pi ^i^/^6[/tex])

=[tex]e^1^7^\pi ^i/^6^0[/tex] ([tex]\frac{1}{2}[/tex](2+[tex]\sqrt{3}[/tex]) + [tex]\frac{1}{2}[/tex](3+2[tex]\sqrt{3}[/tex])i)

=(2+[tex]\sqrt{3}[/tex])e17πi/60(12+([tex]\sqrt{3}[/tex]/ [tex]2[/tex]) i )

=(2+[tex]\sqrt{3}[/tex])[tex]e^1^7^\pi ^i^/^6^0[/tex] [tex]e^\pi ^i^/^3[/tex]

=(2+[tex]\sqrt{3}[/tex]) [tex]e^3^7^\pi^ i^/^6^0.[/tex]

To learn more about exponential form, refer

https://brainly.com/question/19864744

#SPJ4