contestada

Find the instantaneous rate of change of the function
f(x)=2x^3−3x at the point (2,10)

A. -3

B. 5

C. 9

D. 21

E. 33

Respuesta :

We can find the instantaneous rate of change at [tex]x=2[/tex] by evaluating the limit

[tex]\displaystyle \lim_{x\to2} \frac{f(x) - f(2)}{x - 2}[/tex]

(i.e. the definition of the derivative)

Since

[tex]f(x) = 2x^3 - 3x \implies f(2) = 10[/tex]

we have

[tex]\displaystyle \lim_{x\to2} \frac{f(x) - f(2)}{x - 2} = \lim_{x\to3} \frac{2x^3 - 3x - 10}{x - 2}[/tex]

Note that [tex]2x^3-3x-10=0[/tex] when [tex]x=2[/tex], which means [tex]x-2[/tex] divides the numerator exactly. By polynomial division, we can show

[tex]\dfrac{2x^3 - 3x - 10}{x - 2} = 2x^2 + 4x + 5[/tex]

Then in the limit, we can write

[tex]\displaystyle \lim_{x\to2} \frac{f(x) - f(2)}{x - 2} = \lim_{x\to2} \frac{(x-2) (2x^2 + 4x + 5)}{x - 2}[/tex]

As [tex]x\neq2[/tex], we can cancel the factors of [tex]x-2[/tex].

[tex]\displaystyle \lim_{x\to2} \frac{f(x) - f(2)}{x - 2} = \lim_{x\to2} (2x^2 + 4x + 5)[/tex]

The function in the remaining limit is continuous at [tex]x=2[/tex], so we can directly substitute [tex]x=2[/tex] to get its value,

[tex]\displaystyle \lim_{x\to2} \frac{f(x) - f(2)}{x - 2} = 2\cdot2^2 + 4\cdot2 + 5 = \boxed{21}[/tex]

(D)

Otras preguntas