Respuesta :
Data:
Perimeter = 940 ft
width = w
lenght (l) = 3*w - 70
Solving:
3w - 70 + w + 3w - 70 + w = 940
3w + 3w + w + w = 940 + 70 + 70
8w = 1080
[tex]w = \frac{1080}{8} [/tex]
[tex]\boxed{w = 135} \longleftarrow\: widht[/tex]
Soon: lenght (l) = 3*w - 70
l = 3w - 70
l = 3*135 - 70
l = 405 - 70
[tex]\boxed{l = 335} \longleftarrow\: lenght[/tex]
Answer:
dimensions of the base: 135 widht and 335 lenght
Note: (Real test)
Perimeter: 135+135+335+335 = 940 (TRUE)
Perimeter = 940 ft
width = w
lenght (l) = 3*w - 70
Solving:
3w - 70 + w + 3w - 70 + w = 940
3w + 3w + w + w = 940 + 70 + 70
8w = 1080
[tex]w = \frac{1080}{8} [/tex]
[tex]\boxed{w = 135} \longleftarrow\: widht[/tex]
Soon: lenght (l) = 3*w - 70
l = 3w - 70
l = 3*135 - 70
l = 405 - 70
[tex]\boxed{l = 335} \longleftarrow\: lenght[/tex]
Answer:
dimensions of the base: 135 widht and 335 lenght
Note: (Real test)
Perimeter: 135+135+335+335 = 940 (TRUE)
Width and length of rectangle base are 135 ft and 335 ft respective.
Given that;
Length of base is 70 ft than three times the width
Perimeter of this base = 940 ft
Find:
The dimensions of the base
Computation:
Assume;
Width of rectangle base = a
Length of rectangle base = 3a - 70
So,
Perimeter = 2[l + b]
2[(3a - 70) + a] = 940
2[4a - 70] = 940
8a - 140 = 940
8a = 1080
a = 135
Width of rectangle base = 135 ft
Length of rectangle base = 3a - 70
Length of rectangle base = 3(135) - 70
Length of rectangle base = 335 ft
Learn more:
https://brainly.com/question/6465134?referrer=searchResults