a building in a city has a rectangular base. the length of the base measures 70 ft less than three times the width. the perimeter of this base is 940 ft. what are the dimensions of the base?

Respuesta :

Data:
Perimeter = 940 ft
width = w
lenght (l) = 3*w - 70

Solving:
3w - 70 + w + 3w - 70 + w = 940
3w + 3w + w + w = 940 + 70 + 70
8w = 1080
[tex]w = \frac{1080}{8} [/tex]
[tex]\boxed{w = 135} \longleftarrow\: widht[/tex]

Soon: lenght (l) = 3*w - 70
l = 3w - 70
l = 3*135 - 70
l = 405 - 70
[tex]\boxed{l = 335} \longleftarrow\: lenght[/tex]

Answer:
dimensions of the base: 135 widht and 335 lenght

Note: (Real test)
Perimeter: 135+135+335+335 = 940 (TRUE)

Width and length of rectangle base are 135 ft and 335 ft respective.

Given that;

Length of base is 70 ft than three times the width

Perimeter of this base = 940 ft

Find:

The dimensions of the base

Computation:

Assume;

Width of rectangle base = a

Length of rectangle base = 3a - 70

So,

Perimeter = 2[l + b]

2[(3a - 70) + a] = 940

2[4a - 70] = 940

8a - 140 = 940

8a = 1080

a = 135

Width of rectangle base = 135 ft

Length of rectangle base = 3a - 70

Length of rectangle base = 3(135) - 70

Length of rectangle base = 335 ft

Learn more:

https://brainly.com/question/6465134?referrer=searchResults