Answer : The correct option is, (A) [tex]2.0\times 10^{-50}[/tex]
Solution : Given,
Concentration of [tex]O_2[/tex] = [tex]1.6\times 10^{-2}M[/tex]
Concentration of [tex]O_3[/tex] = [tex]2.86\times 10^{-28}M[/tex]
The given balanced equilibrium reaction is,
[tex]3O_2(g)\rightleftharpoons 2O_3(g)[/tex]
The expression for equilibrium constant will be,
[tex]K_c=\frac{[O_3]^2}{[O_2]^3}[/tex]
Now put all the given values in this formula, we get
[tex]K_c=\frac{(2.86\times 10^{-28})^2}{(1.6\times 10^{-2})^3}[/tex]
[tex]K_c=1.99\times 10^{-50}=2.0\times 10^{-50}[/tex]
Therefore, the value of equilibrium constant is, [tex]2.0\times 10^{-50}[/tex]