Respuesta :
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/2866883
_______________
dy
Find —— for an implicit function:
dx
x²y – 3x = y³ – 3
First, differentiate implicitly both sides with respect to x. Keep in mind that y is not just a variable, but it is also a function of x, so you have to use the chain rule there:
[tex]\mathsf{\dfrac{d}{dx}(x^2 y-3x)=\dfrac{d}{dx}(y^3-3)}\\\\\\ \mathsf{\dfrac{d}{dx}(x^2 y)-3\,\dfrac{d}{dx}(x)=\dfrac{d}{dx}(y^3)-\dfrac{d}{dx}(3)}[/tex]
Applying the product rule for the first term at the left-hand side:
[tex]\mathsf{\left[\dfrac{d}{dx}(x^2)\cdot y+x^2\cdot \dfrac{d}{dx}(y)\right]-3\cdot 1=3y^2\cdot \dfrac{dy}{dx}-0}\\\\\\ \mathsf{\left[2x\cdot y+x^2\cdot \dfrac{dy}{dx}\right]-3=3y^2\cdot \dfrac{dy}{dx}}[/tex]
dy
Now, isolate —— in the equation above:
dx
[tex]\mathsf{2xy+x^2\cdot \dfrac{dy}{dx}-3=3y^2\cdot \dfrac{dy}{dx}}\\\\\\ \mathsf{2xy+x^2\cdot \dfrac{dy}{dx}-3-3y^2\cdot \dfrac{dy}{dx}=0}\\\\\\ \mathsf{x^2\cdot \dfrac{dy}{dx}-3y^2\cdot \dfrac{dy}{dx}=-\,2xy+3}\\\\\\ \mathsf{(x^2-3y^2)\cdot \dfrac{dy}{dx}=-\,2xy+3}[/tex]
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{-\,2xy+3}{x^2-3y^2}\qquad\quad for~~x^2-3y^2\ne 0}[/tex]
Compute the derivative value at the point (– 1, 2):
x = – 1 and y = 2
[tex]\mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=\dfrac{-\,2\cdot (-1)\cdot 2+3}{(-1)^2-3\cdot 2^2}}\\\\\\ \mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=\dfrac{4+3}{1-12}}\\\\\\ \mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=\dfrac{7}{-11}}\\\\\\\\ \therefore~~\mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=-\,\dfrac{7}{11}}\quad\longleftarrow\quad\textsf{this is the answer.}[/tex]
I hope this helps. =)
Tags: implicit function derivative implicit differentiation chain product rule differential integral calculus
_______________
dy
Find —— for an implicit function:
dx
x²y – 3x = y³ – 3
First, differentiate implicitly both sides with respect to x. Keep in mind that y is not just a variable, but it is also a function of x, so you have to use the chain rule there:
[tex]\mathsf{\dfrac{d}{dx}(x^2 y-3x)=\dfrac{d}{dx}(y^3-3)}\\\\\\ \mathsf{\dfrac{d}{dx}(x^2 y)-3\,\dfrac{d}{dx}(x)=\dfrac{d}{dx}(y^3)-\dfrac{d}{dx}(3)}[/tex]
Applying the product rule for the first term at the left-hand side:
[tex]\mathsf{\left[\dfrac{d}{dx}(x^2)\cdot y+x^2\cdot \dfrac{d}{dx}(y)\right]-3\cdot 1=3y^2\cdot \dfrac{dy}{dx}-0}\\\\\\ \mathsf{\left[2x\cdot y+x^2\cdot \dfrac{dy}{dx}\right]-3=3y^2\cdot \dfrac{dy}{dx}}[/tex]
dy
Now, isolate —— in the equation above:
dx
[tex]\mathsf{2xy+x^2\cdot \dfrac{dy}{dx}-3=3y^2\cdot \dfrac{dy}{dx}}\\\\\\ \mathsf{2xy+x^2\cdot \dfrac{dy}{dx}-3-3y^2\cdot \dfrac{dy}{dx}=0}\\\\\\ \mathsf{x^2\cdot \dfrac{dy}{dx}-3y^2\cdot \dfrac{dy}{dx}=-\,2xy+3}\\\\\\ \mathsf{(x^2-3y^2)\cdot \dfrac{dy}{dx}=-\,2xy+3}[/tex]
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{-\,2xy+3}{x^2-3y^2}\qquad\quad for~~x^2-3y^2\ne 0}[/tex]
Compute the derivative value at the point (– 1, 2):
x = – 1 and y = 2
[tex]\mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=\dfrac{-\,2\cdot (-1)\cdot 2+3}{(-1)^2-3\cdot 2^2}}\\\\\\ \mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=\dfrac{4+3}{1-12}}\\\\\\ \mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=\dfrac{7}{-11}}\\\\\\\\ \therefore~~\mathsf{\left.\dfrac{dy}{dx}\right|_{(-1,\,2)}=-\,\dfrac{7}{11}}\quad\longleftarrow\quad\textsf{this is the answer.}[/tex]
I hope this helps. =)
Tags: implicit function derivative implicit differentiation chain product rule differential integral calculus