Respuesta :
Answer:Slope (m) =
ΔY
ΔX
=
1
3
= 0.33333333333333
Step-by-step explanation:
Answer:
[tex]\textsf{Slope}: \quad \dfrac{1}{3}[/tex]
[tex]\textsf{Point-slope form}: \quad y-8=\dfrac{1}{3}(x-9)[/tex]
[tex]\textsf{Slope-intercept form}: \quad y=\dfrac{1}{3}x+5[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{4 cm}\underline{Slope formula}\\\\slope ($m$) $=\dfrac{y_2-y_1}{x_2-x_1}$\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ \\are two points on the line.\end{minipage}}[/tex]
Define the given points:
- (x₁, y₁) = (9, 8)
- (x₂, y₂) = (-3, 4)
Substitute the defined points into the slope formula:
[tex]\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{4-8}{-3-9}=\dfrac{-4}{-12}=\dfrac{1}{3}[/tex]
[tex]\boxed{\begin{minipage}{4.6 cm}\underline{Point-slope formula}\\\\$y-y_1=m(x-x_1)$\\\\where $m$ is the slope and\\ $(x_1,y_1)$ is a point on the line.\end{minipage}}[/tex]
Substitute point (9, 8) and the found slope into the point-slope formula:
[tex]\implies y-8=\dfrac{1}{3}(x-9)[/tex]
[tex]\boxed{\begin{minipage}{3.8 cm}\underline{Slope-intercept formula}\\\\$y=mx+b$\\\\where $m$ is the slope\\ and $b$ is the $y$-intercept.\end{minipage}}[/tex]
To write the equation of the line in slope-intercept form, rearrange the point-slope formula:
[tex]\implies y-8=\dfrac{1}{3}(x-9)[/tex]
[tex]\implies y-8=\dfrac{1}{3}x-3[/tex]
[tex]\implies y-8+8=\dfrac{1}{3}x-3+8[/tex]
[tex]\implies y=\dfrac{1}{3}x+5[/tex]