A line goes through the points (9,8) and (-3,4).
What is the slope of the line? Show your work
Write the equation of the line in point-slope form. Show your work
Write the equation of the line in slope-intercept form. Show your work.

Respuesta :

Answer:Slope (m) =

ΔY

ΔX

=

1

3

= 0.33333333333333

Step-by-step explanation:

Answer:

[tex]\textsf{Slope}: \quad \dfrac{1}{3}[/tex]

[tex]\textsf{Point-slope form}: \quad y-8=\dfrac{1}{3}(x-9)[/tex]

[tex]\textsf{Slope-intercept form}: \quad y=\dfrac{1}{3}x+5[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{4 cm}\underline{Slope formula}\\\\slope ($m$) $=\dfrac{y_2-y_1}{x_2-x_1}$\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ \\are two points on the line.\end{minipage}}[/tex]

Define the given points:

  • (x₁, y₁) = (9, 8)
  • (x₂, y₂) = (-3, 4)

Substitute the defined points into the slope formula:

[tex]\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{4-8}{-3-9}=\dfrac{-4}{-12}=\dfrac{1}{3}[/tex]

[tex]\boxed{\begin{minipage}{4.6 cm}\underline{Point-slope formula}\\\\$y-y_1=m(x-x_1)$\\\\where $m$ is the slope and\\ $(x_1,y_1)$ is a point on the line.\end{minipage}}[/tex]

Substitute point (9, 8) and the found slope into the point-slope formula:

[tex]\implies y-8=\dfrac{1}{3}(x-9)[/tex]

[tex]\boxed{\begin{minipage}{3.8 cm}\underline{Slope-intercept formula}\\\\$y=mx+b$\\\\where $m$ is the slope\\ and $b$ is the $y$-intercept.\end{minipage}}[/tex]

To write the equation of the line in slope-intercept form, rearrange the point-slope formula:

[tex]\implies y-8=\dfrac{1}{3}(x-9)[/tex]

[tex]\implies y-8=\dfrac{1}{3}x-3[/tex]

[tex]\implies y-8+8=\dfrac{1}{3}x-3+8[/tex]

[tex]\implies y=\dfrac{1}{3}x+5[/tex]