Respuesta :
Answer:
Let subscription fee x and storage space be y
[tex]{ \rm{y = mx + c}} \\ { \rm{40 = (5 \times m) + c}} \\ { \rm{40 = 5m + c - - - (eqn \: a)}}[/tex]
But there is a constant plan of $80
[tex]{ \rm{40 = 5m + 80}} \\ { \rm{5m = - 40}} \\ { \rm{m = - 8}}[/tex]
Our equation becomes:
[tex]{ \rm{y = 8x + 80}}[/tex]
Answer:
y = 15x - 35
Step-by-step explanation:
STANDARD PLAN information:
- $40 for 5GB.
- $15 per GB thereafter.
Define the variables:
- Let x be the number of GB.
- Let y be the cost in dollars.
If it costs $40 for the first 5GB then y = 40 when 0 ≤ x ≤ 5.
It costs $15 per GB after the first 5GB. Therefore:
- When x = 6, y = 40 + 15 = 55.
- When x = 7, y = 40 + 15(2) = 70.
- When x = 8, y = 40 + 15(3) = 85.
Therefore:
⇒ y = 40 + 15(x - 5)
⇒ y = 40 + 15x - 75
⇒ y = 15x - 35