A catering service offers 8 appetizers, 9 main courses, and 3 desserts. A customer is to select 6 appetizers, 6 main courses, and 2 desserts for a banquet. Inhow many ways can this be done?

Respuesta :

Given:

Number of appetizers offered = 8

Number of appetizers customer is to select = 6

Number of main courses offered = 9

Number of main courses customer is to select = 6

Number of desserts offered = 3

Number of desserts the customer is to select = 2

Let's determine how many ways this can be done.

This is a combination problem.

To determine the number of ways this can be selected, apply the combination formula below:

[tex]_nC_r=\frac{n!}{r!(n-r)!}[/tex]

Thus, we have:

[tex]_nC_r=_8C_6\ast_9C_6\ast_3C_2[/tex]

Solving further, let's apply the formula and combine:

[tex]\begin{gathered} _8C_6\ast_9C_6\ast_3C_2=\frac{8!}{6!(8-6)!}\ast\frac{9!}{6!(9-6)!}\ast\frac{3!}{2!(3-2)!} \\ \\ _8C_6\ast_9C_6\ast_3C_2=\frac{8!}{6!(2)!}\ast\frac{9!}{6!(3)!}\ast\frac{3!}{2!(1)!} \end{gathered}[/tex]

Solving further:

[tex]\begin{gathered} _8C_6\ast_9C_6\ast_3C_2=\frac{8\ast7\ast6!}{6!(2\ast1)}\ast\frac{9\ast8\ast7\ast6!}{6!(3\ast2\ast1)}\ast\frac{3\ast2!}{2!(1)} \\ \\ _8C_6\ast_9C_6\ast_3C_2=\frac{8\ast7}{2\ast1}\ast\frac{9\ast8\ast7}{3\ast2\ast1}\ast\frac{3}{1} \\ \\ _8C_6\ast_9C_6\ast_3C_2=\frac{56}{2}\ast\frac{504}{6}\ast\frac{3}{1} \\ \\ _8C_6\ast_9C_6\ast_3C_2=28\ast84\ast3 \\ \\ _8C_6\ast_9C_6\ast_3C_2=7056 \end{gathered}[/tex]

herefore, there are