Respuesta :
Given:
Number of appetizers offered = 8
Number of appetizers customer is to select = 6
Number of main courses offered = 9
Number of main courses customer is to select = 6
Number of desserts offered = 3
Number of desserts the customer is to select = 2
Let's determine how many ways this can be done.
This is a combination problem.
To determine the number of ways this can be selected, apply the combination formula below:
[tex]_nC_r=\frac{n!}{r!(n-r)!}[/tex]Thus, we have:
[tex]_nC_r=_8C_6\ast_9C_6\ast_3C_2[/tex]Solving further, let's apply the formula and combine:
[tex]\begin{gathered} _8C_6\ast_9C_6\ast_3C_2=\frac{8!}{6!(8-6)!}\ast\frac{9!}{6!(9-6)!}\ast\frac{3!}{2!(3-2)!} \\ \\ _8C_6\ast_9C_6\ast_3C_2=\frac{8!}{6!(2)!}\ast\frac{9!}{6!(3)!}\ast\frac{3!}{2!(1)!} \end{gathered}[/tex]Solving further:
[tex]\begin{gathered} _8C_6\ast_9C_6\ast_3C_2=\frac{8\ast7\ast6!}{6!(2\ast1)}\ast\frac{9\ast8\ast7\ast6!}{6!(3\ast2\ast1)}\ast\frac{3\ast2!}{2!(1)} \\ \\ _8C_6\ast_9C_6\ast_3C_2=\frac{8\ast7}{2\ast1}\ast\frac{9\ast8\ast7}{3\ast2\ast1}\ast\frac{3}{1} \\ \\ _8C_6\ast_9C_6\ast_3C_2=\frac{56}{2}\ast\frac{504}{6}\ast\frac{3}{1} \\ \\ _8C_6\ast_9C_6\ast_3C_2=28\ast84\ast3 \\ \\ _8C_6\ast_9C_6\ast_3C_2=7056 \end{gathered}[/tex]herefore, there are