we have the equation
[tex]a\sqrt[\square]{x+b}+c=d[/tex]i will assume
a=2
b=5
c=3
d=5
solve for x
substitute the given values
[tex]2\sqrt[\square]{x+5}+3=5[/tex]subtract 3 both sides
[tex]2\sqrt[\square]{x+5}=5-3[/tex][tex]2\sqrt[\square]{x+5}=2[/tex]Divide by 2 both sides
[tex]\sqrt[\square]{x+5}=\frac{2}{2}[/tex][tex]\sqrt[\square]{x+5}=1[/tex]squared both sides
[tex]\begin{gathered} x+5=\pm1 \\ x=-5\pm1 \end{gathered}[/tex]the values of x are
x=-4 and x=-6
Verify each solution
For x=-4
[tex]\begin{gathered} \sqrt[\square]{-4+5}=1 \\ 1=1 \end{gathered}[/tex]x=-4 ------> is a solution
Verify x=-6
[tex]\begin{gathered} \sqrt[\square]{-6+5}=1 \\ \sqrt[\square]{-1}=1 \end{gathered}[/tex]Is not true
therefore
x=-6 --------> is an extraneous solution