Which expression does not belong with the other three? justify your response.

To find the equation that does not belong with the other three we have to solve each equation.
Given the equation:
[tex]4\cdot x\cdot7=56[/tex]Dividing by 4 at both sides:
[tex]\begin{gathered} \frac{4\cdot x\cdot7}{4}=\frac{56}{4} \\ x\cdot7=14 \end{gathered}[/tex]7:
[tex]\begin{gathered} \frac{x\cdot7}{7}=\frac{14}{7} \\ x=2 \end{gathered}[/tex][tex]5\cdot2\cdot x=40[/tex]Simplifying on the left:
[tex]10\cdot x=40[/tex]10:
[tex]\begin{gathered} \frac{10\cdot x}{10}=\frac{40}{10} \\ x=4 \end{gathered}[/tex]:
[tex]x\cdot3\cdot9=54[/tex][tex]x\cdot27=54[/tex]27:
[tex]\begin{gathered} \frac{x\cdot27}{27}=\frac{54}{27} \\ x=2 \end{gathered}[/tex][tex]4\cdot x\cdot5=40[/tex]4 :
[tex]\begin{gathered} \frac{4\cdot x\cdot5}{4}=\frac{40}{4} \\ x\cdot5=10 \end{gathered}[/tex]5
[tex]\begin{gathered} \frac{x\cdot5}{5}=\frac{10}{5} \\ x=2 \end{gathered}[/tex]In consequence, the equation that does not belong with the other three is:
[tex]5\cdot2\cdot x=40[/tex]because its solution, 4, is different from the solution to the other equations (2).
If we change the 5 in the equation by a 10 and solve the equation we get:
[tex]\begin{gathered} 10\cdot2\cdot x=40 \\ \frac{10\cdot2\cdot x}{10}=\frac{40}{10} \\ 2\cdot x=4 \\ \frac{2\cdot x}{2}=\frac{4}{2} \\ x=2 \end{gathered}[/tex]And now the equation (with a 10) belongs with the other three