[tex]\bf \qquad \textit{function transformations}
\\ \quad \\
\begin{array}{rllll}
% left side templates
f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
y=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}}\mathbb{R}^{{{ B}}x+{{ C}}}+{{ D}}
\\\\
f(x)=&Acos(Bx+C)+D
\end{array}[/tex]
[tex]\bf \begin{array}{llll}
% right side info
\bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\
\bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
\qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\
\qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\
\bullet \textit{ vertical shift by }{{ D}}\\
\qquad if\ {{ D}}\textit{ is negative, downwards}\\
\qquad if\ {{ D}}\textit{ is positive, upwards}
\end{array}\\\\
[/tex]
[tex]\bf so\implies
\begin{array}{llll}
2cos(x)&+3\\
A&D
\end{array}[/tex]
so hmm, look at the template above... surely you'd know what transformations occurred