Respuesta :

[tex]\bf \qquad \textit{function transformations} \\ \quad \\ \begin{array}{rllll} % left side templates f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}\mathbb{R}^{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)=&Acos(Bx+C)+D \end{array}[/tex]

[tex]\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\ \bullet \textit{ vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\ \qquad if\ {{ D}}\textit{ is positive, upwards} \end{array}\\\\ [/tex]

[tex]\bf so\implies \begin{array}{llll} 2cos(x)&+3\\ A&D \end{array}[/tex]

so hmm, look at the template above... surely you'd know what transformations occurred