Respuesta :

Answer:

The vertex form of a quadratic function is given by  [tex]y = a(x - h)^2 + k[/tex] , where (h, k) is the vertex of the parabola.

Given the function :

g(x) = [tex]4x^2+88x[/tex]

g(x) = [tex]4(x^2+22x)[/tex]

Now, we will be completing the square ;

g(x) = [tex]4(x^2+22x+11^2-11^2)[/tex] = [tex]4(x^2+88x+11^2)-4 \cdot(11^2)[/tex]

⇒ g(x) =[tex]4 (x+11)^2 -4 \cdot 121[/tex] or

[tex]g(x) =4(x+11)^2 - 484[/tex]

therefore, the given function is in the vertex form is, [tex]g(x) =4(x+11)^2 +(-484)[/tex]



Answer:

4 & -484

Step-by-step explanation: