Respuesta :

The average rate of change of the function h(x) = - x² + x + 4 is equal to 22 / 5.

How to determine the average rate of change of a function

In this problem we find the definition of a function and its interval regarding an average rate of change. Graphically speaking, the average rate of change of the function over an interval is represented by the slope of a secant line that passes through two function points related to the interval limits.

The average rate of change is represented by the following formula:

m = [h(b) - h(a)] / (b - a), for a ≤ x ≤ b

If we know that h(x) = - x² + x + 4, a = - 1 and b = 4, then the average rate of change is:

m = [h(4) - h(- 1)] / [4 - (- 1)]

m = [h(4) - h(- 1)] / 5

m = (- 4² + 4 + 4 + (- 1)² - (- 1) - 4) / 5

m = (17 + 5) / 5

m = 22 / 5

The average rate of change is equal to 22 / 5.

To learn more on rates of change: https://brainly.com/question/13103052

#SPJ1